Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site.

نویسندگان

  • M Klinger
  • M Freissmuth
  • P Nickel
  • M Stäbler-Schwarzbart
  • M Kassack
  • J Suko
  • M Hohenegger
چکیده

Contraction of skeletal muscle is triggered by the rapid release of Ca2+ from the sarcoplasmic reticulum via the ryanodine receptor/calcium-release channel. The trypanocidal drug suramin is an efficient activator of the ryanodine receptor. Here, we used high-affinity [3H]ryanodine binding to sarcoplasmic reticulum from rabbit skeletal muscle to screen for more potent analogs of suramin. This approach resulted in the identification of NF307, which accelerates the association rate of [3H]ryanodine binding with an EC50 = 91 +/- 7 microM at 0.19 microM calculated free Ca2+. In single-channel recordings with the purified ryanodine receptor, NF307 increased mean open probability at 0.6 microM Ca2+ from 0.020 +/- 0.006 to 0.53 +/- 0.07 with no effect on current amplitude and unitary conductance. Like caffeine, NF307 exerts a very pronounced Ca2+-sensitizing effect (EC50 of Ca2+ shifted approximately 10-fold by saturating NF307 concentrations). Conversely, increasing concentrations of free Ca2+ sensitized the receptor for NF307 (EC50 = 14.6 +/- 3.5 microM at 0.82 microM estimated free Ca2+). The effects of NF307 and caffeine on [3H]ryanodine binding were additive, irrespective of the Ca2+ concentration. In contrast, the effects of calmodulin, which activates and inhibits the ryanodine receptor in the absence and presence of Ca2+, respectively, and of NF307 were mutually antagonistic. If the purified ryanodine receptor was prebound to a calmodulin-Sepharose matrix, 100 microM NF307 and 300 microM suramin eluted the purified ryanodine receptor to an extent that was comparable to the effect of 10 microM calmodulin. We conclude that NF307 and suramin interact directly with a calmodulin binding domain of the ryanodine receptor. Because of its potent calcium-sensitizing effect, NF307 may represent a lead compound in the search of synthetic ryanodine receptor ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs.

Ca2+ release from skeletal muscle sarcoplasmic reticulum is activated by adenine nucleotides and suramin. Because suramin is known to interact with ATP-binding enzymes and ATP receptors (P2-purinergic receptors), the stimulation by suramin has been postulated to occur via the adenine nucleotide-binding site of the ryanodine receptor/Ca2+-release channel. We tested this hypothesis using suramin ...

متن کامل

Functional regulation of the cardiac ryanodine receptor by suramin and calmodulin involves multiple binding sites.

Suramin and structurally related compounds increase not only the open probability (P(o)) of ryanodine receptor (RyR) channels but also the single-channel conductance in a unique characteristic manner. In this report, we examine the mechanisms underlying the complex changes to cardiac RyR channel function caused by suramin and the evidence that these changes result from an interaction with calmo...

متن کامل

Short- and Long-Term Functional Alterations of the Skeletal Muscle Calcium Release Channel (Ryanodine Receptor) by Suramin: Apparent Dissociation of Single Channel Current Recording and [H]Ryanodine Binding

The present study demonstrates the following characteristic suramin actions on the purified skeletal muscle calcium release channel in single-channel current recordings and [H]ryanodine binding to HSR: 1) Suramin (0.3–0.9 mM) induced a concentration-dependent increase in the open probability (Po > 0.9) at 20 to 100 mM Ca and an almost fully open channel at 1 mM Ca (Po 5 0.95) with a marked shif...

متن کامل

Pharmacological activation of the ryanodine receptor in Jurkat T-lymphocytes.

1 Recently, we provided evidence for cyclic adenosine 5'-diphosphate-ribose, cADP-ribose, as a second messenger in Jurkat T-lymphocytes upon stimulation of the T-cell receptor/CD3- complex (Guse et al., 1999). cADP-ribose mobilizes Ca2+ from an intracellular Ca2+ store which is sensitive to caffeine and gated by the ryanodine receptor/Ca2+ release channel. In the present study we investigated t...

متن کامل

The N-terminal Ca2+-independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca2+.

Calmodulin (CaM) is a ubiquitous Ca(2+)-sensor protein that plays an important role in regulating a large number of Ca(2+) channels, including the inositol 1,4,5-trisphosphate receptor (IP(3)R). CaM binds to the IP(3)R at Ca(2+)-dependent as well as at Ca(2+)-independent interaction sites. In this study, we have investigated the Ca(2+)-independent CaM-binding site for its role in the regulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 55 3  شماره 

صفحات  -

تاریخ انتشار 1999